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Abstract— This paper presents an algorithm for simultaneous
localization and mapping (SLAM) of office-like environments to
use with cnventional 2D laser range finders which is based on the
extended Kalman filter (EKF) approach. This system employs the
set of landmarks extracted from a novel curvature-based envi-
ronment description. Landmarks include straight-line segments
and corners, defined as the intersection of previously detected
line segments. Therefore, these corners can be associated to real
features of the environment or to virtual ones. In order to provide
precise feature estimation, uncertainties will be represented and
propagated from single range reading measurements to all stages
involved in the feature estimation process. Experimental results
provided by the EKF-SLAM algorithm show the ability of the
proposed set of landmarks to correctly characterize structured
environments.

Index Terms— Natural landmark extraction, Mobile robot
navigation, Adaptive curvature estimation, SLAM

I. INTRODUCTION

Mapping and localization are two fundamental abilities for
autonomous mobile robotics. The problem of mapping is
related to the autonomous acquisition of a spatial model or
map of the environment [1]. These maps will be commonly
used for robot navigation. To acquire them, the robot carries
sensors that enable it to perceive the environment. On the
contrary, the idea behind most of the current localization
systems operating in a known indoor environment is that the
robot can match the perceived data with the expected data
available in a map. The robot uses this operation to update
its pose and correct the localization error due to odometry. In
addition, sensor information can be used to simultaneously
localize the robot and build the map of the environment
along the robot’s trajectory. The difficulty of the simultaneous
localization and map building (SLAM) problem lies in the fact
that, to obtain a good map, an accurate estimation of the robot
trajectory is required, but reducing the unbounded growing
odometry errors requires to associate sensor measurements
with a precise map [2].

Different solutions to the SLAM problem have been pro-
posed. In order to increase the efficiency and robustness of
the process, these solutions typically transform sensor data
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in a more compact form before comparing them to the ones
presented on a map or storing them in this simultaneously built
map. The chosen map representation heavily determines the
precision and reliability of the whole task. Typical choices
for the map representation include topological, cell-based,
landmark- based models and sequential Monte Carlo methods
[1].

In this paper, we adopt a landmark-based approach for the
map representation, where a landmark is defined as a distinct
environment feature that the robot can recognize reliably from
its sensors. The main advantages of these approaches are that
they can use multiple models to describe the measurement
process for different parts of the environment and that they
avoid the data smearing effect [2]. However, the success of
this representation is heavily conditioned on the chosen type
of landmark and the existence of accurate sensor capable
of discriminating between similar landmarks. Besides, it is
necessary to have fast and reliable algorithms capable of
extracting landmarks from a large set of noisy and uncertain
data. With respect to the first questions, the majority of
algorithms employ lines and corners as landmarks to map
structured environments acquired using a 2D laser rangefinder.
However, there is a high diversity of algorithms to extract
these landmarks from the laser data. Thus, simple methods
have been broadly used to support mobile robot operation
using line or point features extracted from range images [3].
Although these methods are very fast, they have problems
to deal with adverse phenomena such as false measurements
on surface limits [4]. More robust methods based on more
elaborate concepts, like the fuzzy clustering [4] or the Kalman
filter [5], have been also proposed.

In this work, we employ the local curvature associated to
laser scan range readings to obtain several types of natu-
ral landmarks. This is not a novelty as curvature functions
have proven to be a robust method to extract view-invariant
landmarks from a laser scan data [6], [7]. The main chal-
lenge of curvature-based methods is to deal with landmarks
present in the scan at different scales. To solve this problem,
Madhavan and Durrant-Whyte employ the iterative curvature
scale space (CSS)[6]. This method detects local maxima of
the curvature scale space which are related to corners of the
environment. Although no other landmarks are detected, the
main disadvantage of this approach is its iterative nature which
slows up its working speed. On the contrary, the adaptive
curvature estimation works at several scales using the same
set of thresholds [7]. Therefore, it is very fast when compared
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to iterative solutions.
The proposed system uses the adaptive curvature function

to segment the laser scan into sets of range readings which
present a similar curvature value. In a previous version of this
work [7], these sets are directly employed to provide corners,
line and curve segments. However, parameter vectors extracted
from the curvature function are noisy and the algorithm
does not provide information about the uncertainty matrices
associated to the landmarks. These problems must be solved
to correctly use these landmarks in a EKF based SLAM
framework. In this paper, these problems are solved by fitting
models to the line segments and estimating the uncertainty
associated to lines and corners.

This paper is organized as follows: Section 2 describes the
segmentation stage using the adaptive curvature function. Sec-
tion 3 describes the landmark extraction and characterization
stages. In section 4 the integration in a SLAM algorithm is
explained. Experimental results are provided in Section 5 and
finally Section 6 summarizes conclusions and future work.

II. LASER SCAN SEGMENTATION

Segmentation is a process whose aim is to classify each
scan data into several groups, each one of them is associated
to different surfaces of the environment. In our approach, the
segmentation is achieved in two consecutive steps. Firstly,
scan data is segmented using the adaptive breakpoint detector
[4]. This algorithm permits to reject isolated range readings,
but it provides an undersegmentation of the laser scan, i.e.
extracted segments between breakpoints typically group two
or more different structures (see Fig. 1). In order to avoid
this problem, a second segmentation criterion is applied into
each segment. This one is based on the curvature associated
to each range reading: consecutive range readings belong to
the same segment while their curvature values are similar. To
perform this segmentation task, the adaptive curvature function
associated to each segment of the laser scan is obtained [7].

Figure 1a shows the final segmentation of a laser scan.
Segment limits have been marked with triangles over the scan
range readings. It can be noted that the segmentation task
is correctly achieved. Figure 1b also shows that a real line
segment will be represented in the curvature function as a
set of consecutive range readings with curvature values close
to zero. Although circle segments can be also detected and
used to provide other type of landmarks (circular or elliptical
shaped objects) [7], they have not been included in the SLAM
process yet. Therefore, line segments are the unique inputs of
the Landmark Extraction and Characterization stage, which is
described in the next section.

III. LANDMARK EXTRACTION AND CHARACTERIZATION

A. Line Segments

There are several approaches for line fitting. Thus, the
parameters of a straight-line in slope-intercept form can be
determined using the equations for linear regression [3]. Then,
the resulting line can be converted into the normal form
representation

x cos θ + y sin θ = d (1)

being θ the angle between the x axis and the normal of
the line and d the perpendicular distance of the line to the
origin. Under the assumption of error free laser bearings,
the covariance of the angle and distance estimate of the line
can be derived. However, the problem of fitting a set of
n points in Cartesian coordinates (xi, yi) to a straight-line
model using linear regression is based on the assumption
that the uncertainty σi associated with each yi is known and
xi values are known exactly. In our case, the points being
processed in Cartesian coordinates are the result of a nonlinear
transformation of points from polar coordinates (ri, φi):

xi = ri cos φi yi = ri sin φi (2)

This makes errors in both Cartesian coordinates correlated [8],
i.e. all terms of the covariance matrix associated to a range
reading i in Cartesian coordinates can be non-zero ones.

Therefore, a better approach for line fitting is to minimize
the sum of square perpendicular distances of range readings
to lines. This yields a nonlinear regression problem which can
be solved for polar coordinates [9]. The line in the laser range
finder’s polar coordinate system is represented as

r cos(θ − φ) = d (3)

where θ and d are the line parameters (Eq. (1)). The orthogonal
distance di of a range reading, (r, φ)i, to this line is

di = ri cos(θ − φi) − d (4)

and the sum of squared errors can be defined as

Sl(b) =
n∑

i=1

d2
i =

n∑
i=1

(ri cos(θ − φi) − d)2 (5)

being n the number of range readings that belong to the
line segment and b = (θ d)T the parameter vector. Arras
and Siegwart [9] propose to weigh each single point by a
different value wi that depends on the variance modelling
the uncertainty in radial and angular direction. In our case,
uncertainties in range and bearing are the same for every range
reading, so the weights for each point in polar coordinates are
also equal. Therefore, we have not employed these weights.

The model parameters of the line (θ,d) can be obtained by
solving the nonlinear equation system to minimize (5)

∂Sl(b)
∂θ

= 0
∂Sl(b)

∂d
= 0 (6)

whose solution can be used in Cartesian form for computation
reasons [9]:

θ = 1
2 arctan

( −2
∑

i(ȳ−yi)(x̄−xi)∑
i[(ȳ−yi)2−(x̄−xi)2]

)
= 1

2 arctan N
D

d = x̄ cos θ + ȳ sin θ
(7)

where x̄ =
∑

ri cos φi/n and ȳ =
∑

ri sin φi/n.
In order to provide precise feature estimation, it is not

only necessary to extract the feature parameter vector, but
also to represent uncertainties and to propagate them from
single range reading measurements to all stages involved in
the feature estimation process. Assuming that the individual
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Fig. 1. a) Segmentation of a single laser scan (♦-breakpoints and �-segment limits); b) curvature function associated to segment A; and c) landmark
detection (♦-line segments end-points, o- real corners, �- virtual corners, →- corner orientations).

measurements are independent, the covariance matrix of the
estimated line parameters (θ,d) can be calculated as [8]

Cθ,d =
∑n

i JiCxyiJ
T
i =∑n

i

[
∂θ/∂xi ∂θ/∂yi

∂d/∂xi ∂d/∂yi

]
Cxyi

[
∂θ/∂xi ∂d/∂xi

∂θ/∂yi ∂d/∂yi

]
(8)

where the terms ∂θ/∂xi, ∂θ/∂yi, ∂d/∂xi and ∂d/∂yi are
obtained as follows

∂θ
∂xi

= (ȳ−yi)D+(x̄−xi)N
N2+D2

∂θ
∂yi

= (x̄−xi)D+(ȳ−yi)N
N2+D2

∂d
∂xi

= 1
n cos θ + (ȳ cos θ − x̄ sin θ) (ȳ−yi)D+(x̄−xi)N

N2+D2

∂d
∂yi

= 1
n sin θ + (ȳ cos θ − x̄ sin θ) (x̄−xi)D+(ȳ−yi)N

N2+D2

(9)

being N and D the numerator and denominator of the expres-
sion of θ (7).

Figure 1c shows the line segments extracted using the
described approach and corresponding to the laser scan in
Figure 1a. The end-points of each line segment are determined
by the intersection between this line and the two lines which
are perpendiculars to it and pass through the first and last range
readings.

B. Real and Virtual Corners

Corners are due to change of surface being scanned or to
change in the orientation of the scanned surface. Thus, they are
not associated to laser scan discontinuities. In order to obtain
the corner location, it must be taken into account that failing
to identify the correct corner point in the data can lead to
large errors especially when corner is distant from the robot.
Therefore, it is not usually a good option to locate the corner
in one of the scan range readings. Other option is to extract the
corner taking into account the two lines associated to it. Thus,
corner can be detected as the furthest point from a line defined
by the two non-touching end-points of the lines or by finding
that point in the neighborhood of the initial corner point, which
gives the minimum sum of error variances of both lines [8]. In
our case, the existence of a real corner can be determined from
the curvature function [7] but its characterization (estimation
of the mean pose and uncertainty measurement) is conducted
using the two lines which generate the corner. In any case a
corner will be always defined as the intersection of two lines,

i.e. corners defined as the intersection of a curve and a line or
of two curves will be not taken into account.

However, as it is pointed out by Madhavan and Durrant-
Whyte [6], one of the main problems of a localization algo-
rithm which is only based on corner detection is that the set
of detected natural landmarks at each time step can be very
reduced. This generates a small observation vector that does
not provide a good estimation of the robot’s pose. To attenuate
this problem, we include in this work a new natural landmark
which can be used in the same way that real corners: the
virtual corner. Virtual corners are defined as the intersection
of extended line segments which are not previously defined as
real corners.

The virtual corner described in this paper is related to the
virtual edge anchor [10]. However, in our case, the virtual
corner is related to the line segments previously extracted
from the curvature function. The virtual edge anchor is found
without explicit line extraction and, although the authors do
not precise the used approach, they justify it because offers
higher robustness against partial occlusion and noise effects.
In our approach, the robust detection of lines is directly related
to the adaptive curvature estimation algorithm and the process
employed for line characterization.

Then, real and virtual corners can be obtained from the
intersection of the previously detected straight-line segments.
Once a corner is detected, its position (xc,yc) is estimated as
the intersection of the two lines which generate it. If these
lines are characterized by (θ1,d1) and (θ2,d2), the corner point
(xc,yc) will be the intersection of these lines, i.e.

xc cos θ1 + yc sin θ1 − d1 = 0
xc cos θ2 + yc sin θ2 − d2 = 0 (10)

The first equation of (10) gives us an expression for xc

xc =
d1 − yc sin θ1

cos θ1
(11)

If we substitute this expression in the second equation of (10),
we get

yc =
d2 cos θ1 − d1 cos θ2

sin(θ2 − θ1)
(12)

Finally, we can substitute (12) in (11) to get

xc =
d1 sin θ2 − d2 sin θ1

sin(θ2 − θ1)
(13)
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The corner orientation αc can be also calculated as the bisector
of the angle defined by these two lines. Finally, the covariance
of the estimated corner parameters Cxc,yc,αc

can be calculated
from the errors in the line parameters that can be computed
through error propagation [9]. Fig. 1c illustrates the corner
detection results. Corner poses and uncertainties have been
marked. Fig. 1c also presents that virtual corners significantly
increases the size of the extracted observation vector. Some
corners (real or virtual) can be duplicated depending on the
geometry of the environment. In Figure 1c the pair of line
segments 1-4 and 2-4 define a corner at the same position
A, but with different orientations. The problem is when the
corner defined by two pairs of line segments (e.g., the corner
B generated by lines 1-3 and 2-3) has the same location and
orientation. In these cases these features might be filtered out
to do not provide duplicate landmarks.

IV. INTEGRATION IN A SLAM ALGORITHM

The landmark extraction and characterization outcomes are
a set of stable landmarks and their associated uncertainties,
which are suitable to be used in a SLAM algorithm. This
has been implemented following the usual EKF based SLAM
guidelines [11] [12] that has been improved in order to take
full advantage of the observations provided by the feature
extraction system. In the previous section the extraction of
the different natural landmarks from laser range readings has
been explained. All of these landmarks are described by three
parameters (three dimensional features) and their covariance
matrix. The first and second parameters are the location for
corners and the orientation and perpendicular distance for
lines. The last parameter is the orientation for corners and
length for line segments.

The main difference to the usual EKF-SLAM algorithm is
the data association stage, which is the most critical part in this
sort of implementations [13]. All these different observations
has been integrated in the Combined Constraint Data Associa-
tion (CCDA) method [13] in order to achieve a reliable mutiple
data tracking in cluttered environments. In CCDA a batch
association between observations and landmarks stored in the
map are obtained applying absolute and relative constraints.
Both of them are statistical threshold based on the normalised
innovation squared (NIS) validation gate. The absolute con-
straints determine individual compatibility across the two data
sets while relative constraints guarantee joint compatibility. In
this case, feature parameters are very different, mainly between
point landmarks (real and virtual corners) and line segments.
Absolute constrains are applied through validation gate for
each feature in pairs observation-landmark. The innovation
sequence νij and the innovation covariance Sij relate observed
measurement z to the predicted observation h(x̂j) for target
xj by the difference

νij = z − h(x̂j)Sij = ∇hxa
Pa∇hT

xa
+ R (14)

where ∇hxa
is the measurement jacobian, Pa is the system

state covariance and R the observation covariance [12]. The
NIS gate is used as absolute constraint

NIS ≡ νT
ijS

−1
ij νij < γn (15)

This value is defined by fixing the region of acceptance of the
χ2 distribution. Then, in our experiments the innovation vector
is of dimension 3 for point features and dimension 2 for lines,
and the gate γ3 is equal to 8.0 and γ2 equal to 6.0. If zi is truely
an observation of target xj , the association will be accepted
with 95 % of probability. The length of lines are not used in the
data association process due to the variation in the observation
of complete line segments caused by partial observations,
occlusions, etc. Relative constraints are computed to each data
set separately using an invariant property between features. In
case of points features (x̂i, ŷi, α̂i) and (x̂j , ŷj , α̂j) in x̂, it is
their relative distance

dij(x̂) =
√

(x̂i − x̂j)2 + (ŷi − ŷj)2 + (α̂i − α̂j)2 (16)

with scalar variance

σ2
ij = Pd = ∇dT

x P∇dx (17)

where P is the system state covariance and the Jacobian ∇dx

can be obtained as

∇dx =
(

∂dx

∂x

)
x̂

(18)

In case of lines (α̂i, r̂i, l̂i) and (α̂j , r̂j , l̂j) the relative distance
is computed as

dij(x̂) =
√

(α̂i − α̂j)2 + (r̂i − r̂j)2 (19)

where the length of lines is not used, as it has been mentioned
above. Finally, in order to apply relative constraints between
point and line segments, a new distance function must be
defined

dij(x̂) = (x̂i− r̂j cos α̂j) cos α̂j +(ŷi− r̂j sin α̂j) sin α̂j (20)

Being set A and set B two data sets, and CAi
the relative con-

straint {dAi
, σ2

Ai
} from set A and CBj

the relative constraint
{dBj

, σ2
Bj

} from set B. The constraints for each set match if
they satisfy the NIS threshold

Mij =
(dAi

− dBj
)2

σ2
Ai

+ σ2
Bj

< γ1 (21)

V. EXPERIMENTAL RESULTS

The feature extraction system and the EKF-SLAM algo-
rithm have been implemented on an ActivMedia Pioneer2-AT
equipped with a SICK LMS200 laser rangefinder. Firstly, two
static experiments have been performed to evaluate the feature
extraction system about the speed (t), robutness (rlandmark,
relation between times that a feature has been detected and
times it has been visible), total number of detected landmarks
(k) and the number of multiple detections of the same feature
(km). Table I shows average values for these experiments
composed of 50 scans in two different indoor settings, a
laboratory and a corridor. In this table rrc, rvc and rls

represent the robustness of the real corners, virtual corners
and line segments extraction, respectively. It can be noted
that in test one there are more features due to the laboratory
is more furnished than the corridor. These experiments show
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Fig. 2. a) Landmarks and uncertainties obtained using the SLAM algorithm: odometry (red line), estimated trajectory (black line), vehicle and its uncertainty
(black triangle and blue ellipse), point and line landmarks (blue points and lines) and their uncertainties (blue ellipses), observations (red points, lines and
ellipses); b) Segmentation of a scan (♦ -line segments endpoints, ◦- real corners, � -virtual corners, →-corner orientation); and c) curvature functions
associated to b). Line and real corners have been numbered.

that usually there are not duplicate observations of the same
feature. The total time necessary to process the scan data
is very reduced, less than 25 ms in a 855 MHz PC, being
suitable for real time applications. Compared to other feature
extraction algorithms, the proposed method permits to extract
and characterize several features with very low computational
requirements.

Some experiments have been carried out to show the ef-
fectiveness of the feature extraction system and its integration
in the SLAM algorithm explained in the previous section. In
order to illustrate the advantage of our method, a representative
experiment and a segmentation of a scan are shown in Figure
2. Figure 2a represents the map trajectory estimation obtained
using the EKF-SLAM algorithm in an indoor environment.
The uncertainty of landmarks (except line segments) and robot
pose are also shown in this figure. It can be noted that the ex-
tracted and characterized features has been used in this SLAM

TABLE I

RESULTS OF THE FEATURE EXTRACTION SYSTEM.

t(ms) rrc rvc rls k km

Test 1 25 0.91 0.98 0.98 21 0.02
Test 2 22 0.94 0.97 0.98 10 0.09

algorithm providing stable landmarks to the robot localisation
and map building process. An application of the corner char-
acterization algorithm is depicted in Figure 2b. This figure
presents a scan data collected in a structured environment.
The laser scan range readings have been represented over the
real layout. There are nearby corners that can produce errors
in the data association process (e.g. corners 5 and 6). Corner
orientation allows to avoid data association mistakes. Besides
these orientations provide additional information about corners
improving the update stage in the SLAM algorithm. Finally
Figure 2c shows the curvature functions associated to the
laser scan in Figure 2b. The different curvature functions are
bounded by breakpoints or rupture points.

Figure 3 shows a loop-closing experiment in a similar
indoor environment. In this figure the robot trajectory and the
feature map have been depicted. It can be seen the accuracy
of the estimated trajectory which starts in a laboratory and
continue through a corridor. After loop-closing the robot enters
in the same corridor and finally returns to the laboratory at
the same position. Notice the difference in the size of the
landmarks uncertainties between the experiments shown in
figures 2a and 3. This is due to the start condition, in the
experiment shown in Figure 2a the robots starts in a corridor
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Fig. 3. Loop-closing experiment with start and return at the same position:
odometry (red line), estimated trajectory (black line), vehicle and its uncer-
tainty (black triangle and blue ellipse), point and line landmarks (blue points
and lines) and their uncertainties (blue ellipses)

where before moving only two line segments are visible. Line
segments provide less information for localization (distance
to the line and orientation) than point landmarks (location
and orientation). More landmarks are visible when the robot
is close to the door of the room. In the experinemt shown
in Figure 3 the robot starts in a laboratory where some line
segments and point landmarks are visible and, therefore, the
uncertainty in the robot pose is bounded to a smaller size
from the beginning. In Figure 4 the close of the loop is shown
in detail. The uncertainty of landmarks are bounded by the
robot pose uncertainty at the moment they were observed for
first time. The uncertainty of the robot pose increases while
it moves through unkown areas. However, when the robot
returns to previously visited areas (Figure 4a), the uncertainty
decreases drastically when the observations are associated to
known landmarks stored in the feature map (Figure 4b).

VI. CONCLUSIONS

This paper describes the implementation and obtained re-
sults of an EKF based SLAM approach using a 2D laser
rangefinder. The main novelty of this system is that the laser

Fig. 4. Detail closing the loop. a) Known landmarks are visible and b) after
update. See Figure 3

data is segmented using an adaptive curvature estimator. Land-
marks extracted from these segments are characterized by their
parameter vectors and associated covariance matrices. Partic-
ularly, this approach employs line segments, real corners and
virtual corners as landmarks. The accuracy and robustness of
the proposed approach has been demonstrated in several loop-
closing experiments while meeting real time requirements. In
contrast to other algorithms that require iterative processing of
the same laser scan [6] [5], the described algorithm adaptively
filters the laser scan depending on the natural scale of the
contour range readings and determines in a fast way the
parameters of the features.

Future work will be focused on increasing the set of
landmarks with circular shapes and edges (breakpoints asso-
ciated to free end-points of plane surfaces). Experiments must
be also extended to deal with semi-structured environments.
Therefore, before mapping large environments it is necessary
to solve the scaling problem in this SLAM implementation.
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